Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Atmospheric water vapor is an abundant and renewable resource that can alleviate growing water scarcity. Hybrid hydrogel desiccants composed of hygroscopic salts hold significant promise for atmospheric water harvesting (AWH) due to their increased capacity for water uptake. Thus far, many efforts in fabricating these desiccants require multistep processes, where the salt impregnation is achieved post-hydrogel fabrication. Here, we develop a scalable wet spinning methodology using aramid nanofibers (ANFs) to template and coagulate hydroxypropyl cellulose (HPC) into filaments in a coagulation bath consisting of water and lithium chloride (LiCl). HPC serves as the matrix to retain the captured water vapor, and later releases it upon heating. ANFs serve as the physical cross-linker between HPC, allowing for wet spinning at a speed up to 61 m h–1. The composite filaments achieve up to 0.55 g g–1 water uptake at 30% relative humidity (RH) and 21 °C, reaching 80% saturation in 40 min. With a lower critical solution temperature of 39 °C, the desiccant filaments can release up to 72% of the captured water at 60 °C after 30 min. In an AWH chamber, the filaments can achieve daily water production of 5.21 L kg–1 day–1 at 30% RH and 21 °C.more » « lessFree, publicly-accessible full text available November 26, 2026
-
Free, publicly-accessible full text available October 22, 2026
-
Abstract Strong light-matter interactions in localized nano-emitters placed near metallic mirrors have been widely reported via spectroscopic studies in the optical far-field. Here, we report a near-field nano-spectroscopic study of localized nanoscale emitters on a flat Au substrate. Using quasi 2-dimensional CdSe/CdxZn1-xS nanoplatelets, we observe directional propagation on the Au substrate of surface plasmon polaritons launched from the excitons of the nanoplatelets as wave-like fringe patterns in the near-field photoluminescence maps. These fringe patterns were confirmed via extensive electromagnetic wave simulations to be standing-waves formed between the tip and the edge-up assembled nano-emitters on the substrate plane. We further report that both light confinement and in-plane emission can be engineered by tuning the surrounding dielectric environment of the nanoplatelets. Our results lead to renewed understanding of in-plane, near-field electromagnetic signal transduction from the localized nano-emitters with profound implications in nano and quantum photonics as well as resonant optoelectronics.more » « less
-
Abstract A top‐down lithographic patterning and deposition process is reported for producing nanoparticles (NPs) with well‐defined sizes, shapes, and compositions that are often not accessible by wet‐chemical synthetic methods. These NPs are ligated and harvested from the substrate surface to prepare colloidal NP dispersions. Using a template‐assisted assembly technique, fabricated NPs are driven by capillary forces to assemble into size‐ and shape‐engineered templates and organize into open or close‐packed multi‐NP structures or NP metamolecules. The sizes and shapes of the NPs and of the templates control the NP number, coordination, interparticle gap size, disorder, and location of defects such as voids in the NP metamolecules. The plasmonic resonances of polygonal‐shaped Au NPs are exploited to correlate the structure and optical properties of assembled NP metamolecules. Comparing open and close‐packed architectures highlights that introduction of a center NP to form close‐packed assemblies supports collective interactions, altering magnetic optical modes and multipolar interactions in Fano resonances. Decreasing the distance between NPs strengthens the plasmonic coupling, and the structural symmetries of the NP metamolecules determine the orientation‐dependent scattering response.more » « less
An official website of the United States government
